государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа имени Героя Российской Федерации Олега Николаевича Долгова п. Луначарский муниципального района Ставропольский Самарской области

445145, РФ, Самарская область, Ставропольский район, п. Луначарский, улица Школьная 8 Телефон/факс (8482) 231-348, e-mail: lunachar sch@mail.ru

«PACCMOTPEHO»

на заседании методического объединения Протокол № 1 от 25.08.2023 г. председатель МО

С.А.Маркина

«ОТРИНЯПО»

решением педагогического совета Протокол № 8 от 28. 08. 2023 г. председатель ПС ______ О.В.Азязова

«УТВЕРЖДЕНО»

приказ № - 143 -од от 31.08.2023 г. Директор школы ______ А.А.Тарабыкина

Рабочая программа Учебного предмета «Физика»

10-11 классы

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРЕДМЕТА по физике в 10-11 классах

При изучении курса «Физика» в соответствии с требованиями ФГОС формируются следующие *личностные результаты*.

- 1. Личностные, метапредметные и предметные результаты освоения учебного предмета Деятельность образовательной организации общего образования при обучении физике в средней школе должна быть направлена на достижение обучающимися следующих личностных результатов:
 - умение управлять своей познавательной деятельностью; готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
 - умение сотрудничать со взрослым, сверстниками, детьми младшего возраста в образовательной, учебно-исследовательской, проектной и других видах деятельности;
 - сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки; заинтересованность в научных знаниях об устройстве мира и общества; готовность к научно-техническому творчеству;
 - чувство гордости за российскую физическую науку, гуманизм;
 - положительное отношение к труду, целеустремлённость;
 - экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание ответственности за состояние природных ресурсов и разумное природопользование.

Метапредметными результатами освоения выпускниками средней школы программы по физике являются:

- 1) освоение регулятивных универсальных учебных действий:
- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
 - определять несколько путей достижения поставленной цели;
- задавать параметры и критерии, по которым можно определить, что- цель достигнута;
- **сопоставлять** полученный результат деятельности с поставленной заранее целью;

осознавать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей;

2) **освоение познавательных универсальных учебных действий:** критически оценивать и интерпретировать информацию с разных позиций;

распознавать и фиксировать противоречия в информационных источниках;

использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;

осуществлять развёрнутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;

искать и находить обобщённые способы решения задач; приводить критические аргументы, как в отношении собственного суждения, так и в отношении действий и

суждений другого человека;

анализировать и преобразовывать проблемно-противоречивые ситуации;

выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;

- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- занимать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над её решением; управлять совместной познавательной деятельностью и подчиняться);

3) освоение коммуникативных универсальных учебных действий:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за её пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- развёрнуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- согласовывать позиции членов команды в процессе работы над **общим продуктом/решением**;

представлять публично результаты индивидуальной и групповой деятельности как перед знакомой, так и перед незнакомой аудиторией;

— подбирать партнёров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;

воспринимать критические замечания как ресурс собственного развития;

- точно и ёмко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметными результатами освоения программы на базовом уровне являются:

— сформированность представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания, о роли и месте физики в современной научной картине мира; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;

владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное пользование физической терминологией и символикой;

- сформированность представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усвоение основных идей механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладение понятийным аппаратом и символическим языком физики;
- владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент; владение умениями обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
- владение умениями выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов, проверять их экспериментальными средствами, формулируя цель исследования; владение умениями описывать и объяснять самостоятельно проведённые эксперименты, анализировать результаты полученной из

экспериментов информации, определять достоверность полученного результата;

- умение решать простые физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;
- понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду, осознание возможных причин техногенных и экологических ката строф;
- сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

В результате изучения курса физики 10 класса на базовом уровне ученик должен: знать / понимать

- смысл понятий: физическое явление, физическая величина, модель, гипотеза, физический закон, теория, принцип, постулат, пространство, время, вещество, взаимодействие, инерциальная система отсчета, материальная точка, идеальный газ, абсолютно черное тело, тепловой двигатель, электрический заряд, электрический ток, проводник, полупроводник, диэлектрик, плазма;
- смысл физических величин: путь, перемещение, скорость, ускорение, масса, плотность, сила, давление, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия, момент силы, период, частота, амплитуда колебаний, длина волны, внутренняя энергия, удельная теплота парообразования, удельная теплота плавления, удельная теплота сгорания, температура, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, напряженность электрического поля, разность потенциалов, электроемкость, энергия электрического поля, электродвижущая сила;
- смысл физических законов, принципов, поступатов: принципы суперпозиции и относительности, закон Паскаля, закон Архимеда, законы динамики Ньютона, закон всемирного тяготения, закон сохранения импульса и механической энергии, закон сохранения энергии в тепловых процессах, закон термодинамики, закон сохранения электрического заряда, закон Ома для участка электрической цепи, закон Джоуля Ленца, закон Гука, основное уравнение кинетической теории газов, уравнение состояния идеального газа, закон Кулона, закон Ома для полной цепи; основные положения изучаемых физических теорий и их роль в формировании научного мировоззрения;
- вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;
 vметь
- описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, равномерное движение по окружности, передачу давления жидкостями и газами, плавание тел, диффузию, теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, тепловое действие тока, термоэлектронная
- эмиссия, электролиз, газовые разряды;
- объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей, аморфных и кристаллических тел;
- описывать и объяснять результаты экспериментов: независимость ускорения свободного падения от массы падающего тела; нагревание газа при его быстром сжатии и охлаждение при быстром расширении; повышение давления газа при его нагревании в закрытом сосуде; броуновское движение; электризацию тел

- при их контакте; зависимость сопротивления проводников от температуры и освещения;
- описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики;
- определять характер физического процесса по графику, таблице, формуле; отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- приводить примеры практического применения физических знаний законов механики, термодинамики и электродинамики в энергетике; опытов, иллюстрирующих, что наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; приводить примеры, показывающие, что эксперимент позволяет проверить истинность теоретических выводов; физическая теория дает возможность объяснять явления природы и научные факты; физическая теория позволяет предсказывать еще неизвестные явления и их особенности; измерять расстояние, промежутки времени, массу, силу, давление, температуру, влажность воздуха, скорость, ускорение свободного падения; плотность вещества, работу, мощность, энергию, коэффициент трения скольжения, удельную теплоемкость вещества, удельную теплоту плавления вещества, силу тока, напряжение, электрическое сопротивление, работу и мощность электрического тока, эквивалентное сопротивление электрической цепи; ЭДС и внутреннее сопротивление источника тока; представлять результаты измерений с учетом их погрешностей; применять полученные знания для решения физических задач;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;
- оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
- рационального природопользования и защиты окружающей среды.

Содержание учебного предмета

Научный метод познания природы (1ч)

Физика - фундаментальная наука о природе. Научный метод познания. Методы научного исследования физических явлений. Эксперимент и теория в процессе познания природы. Погрешности измерения физических величин. Научные гипотезы. Модели физических явлений. Физические законы и теории. Границы применимости физических законов. Физическая картина мира. Открытия в физике — основа прогресса в технике и технологии производства.

Механика (26 ч)

Системы отсчета. Скалярные и векторные физические величины. Механическое движение и его виды. Относительность механического движения. Мгновенная скорость. Ускорение. Равноускоренное движение. Движение по окружности с постоянной по модулю скоростью. Принцип относительности Галилея. Масса и сила. Законы динамики. Способы измерения сил. Инерциальные системы отсчета. Закон всемирного тяготения. Закон сохранения импульса. Кинетическая энергия и работа. Потенциальная энергия тела в гравитационном поле. Потенциальная энергия упруго деформированного тела. Закон сохранения механической энергии.

Демонстрации

Зависимость траектории от выбора системы отсчета. Падение тел в воздухе и в вакууме. Явление инерции. Измерение сил. Сложение сил. Зависимость силы упругости от деформации. Реактивное движение. Переход потенциальной энергии в кинетическую и обратно.

Фронтальные лабораторные работы

- 1. Изучение движения тела по окружности.
- 2. Изучение закона сохранения механической энергии.

Молекулярная физика. Термодинамика (17 ч)

Молекулярно-кинетическая теория строения вещества и ее экспериментальные основания. Абсолютная температура. Уравнение состояния идеального газа. Связь средней кинетической энергии теплового движения молекул с абсолютной температурой. Строение жидкостей и твердых тел. Кристаллические и аморфные тела. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый и второй законы термодинамики. Принципы действия тепловых машин. КПД теплового двигателя. Проблемы теплоэнергетики и охрана окружающей среды.

Демонстрации

Механическая модель броуновского движения.

Изменение давления газа с изменением температуры при постоянном объеме. Изменение объема газа с изменением температуры при постоянном давлении. Изменение объема газа с изменением давления

при постоянной температуре. Устройство гигрометра и психрометра. Кристаллические и аморфные тела. Модели тепловых двигателей.

Фронтальная лабораторная работа

3. Опытная проверка закона Гей-Люссака.

Электродинамика (28 ч)

Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Разность потенциалов. Электроемкость. Конденсатор. Последовательное и параллельное соединение проводников. Работа и мощность тока. Источники постоянного тока. Электродвижущая сила. Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, газах и вакууме. Полупроводники. Плазма.

Демонстрации

Электризация тел. Электрометр. Взаимодействие зарядов. Энергия заряженного конденсатора. Электроизмерительные приборы.

Фронтальные лабораторные работы

- 4. Изучение последовательного и параллельного соединения проводников.
- 5. Измерение ЭДС и внутреннего сопротивления источника тока.

Планируемые результаты изучения учебного предмета

Выпускник научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- демонстрировать на примерах взаимосвязь между физикой и другими

естественными науками;

- устанавливать взаимосвязь естественно-научных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
 - различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные измерения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с

выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;

• объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 класс

Тема раздела	Всего часов
Введение	1
Механика	26
Молекулярная физика. Термодинамика.	17
Электродинамика	28

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА 11 КЛАССА

Содержание курса, включая демонстрационные опыты и фронтальные лабораторные работы, полностью соответствуют Примерной программе основного общего образования курса.

Основы электродинамики (16 часов)

Глава1. Магнитное поле

Взаимодействие токов. Магнитное поле. Индукция магнитного поля. Сила Ампера. Сила Лоренца. Магнитные свойства вещества.

Глава 2. Электромагнитная индукция

Открытие электромагнитной индукции. Правило Ленца. Магнитный поток. Закон электромагнитной индукции. Вихревое электрическое поле. Самоиндукция. Индуктивность. Энергия магнитного поля. Электромагнитное поле.

Колебания и волны (14 часов)

Глава 3. Механические колебания

Свободные и вынужденные колебания. Условия возникновения колебаний. Динамика колебательного движения. Гармонические колебания. Энергия колебательного движения. Вынужденные колебания. Резонанс.

Глава 4. Электромагнитные колебания

Свободные колебания. Гармонические колебания. Затухающие и вынужденные колебания. Резонанс. Свободные электромагнитные колебания. Аналогия между механическими и электромагнитными колебаниями. Гармонические электромагнитные колебания. Формула Томсона. Переменный электрический ток. Резистор в цепи переменного тока. Конденсатор и катушка индуктивности в цепи переменного тока. Резонанс в электрической цепи. Автоколебания. Генератор переменного тока. Трансформатор. Производство, передача и потребление электроэнергии.

Глава 5. Механические волны

Волновые явления. Характеристики волны. Распространение волн в упругих средах. Уравнение гармонической бегущей волны. Звуковые волны. Интерференция, дифракция и поляризация механических волн.

Глава 6. Электромагнитные волны

Электромагнитное поле. Электромагнитная волна. Экспериментальное обнаружение электромагнитных волн. Плотность потока электромагнитного излучения. Изобретение радио А.С. Поповым. Принципы радиосвязи. Модуляция и детектирование. Свойства электромагнитных волн. Распространение радиоволн. Радиолокация. Понятие о телевидении. Развитие средств связи.

Оптика (10 часов)

Глава 7. Оптика. Световые волны.

Скорость света. Принцип Гюйгенса. Закон отражения света. Законы преломления света. Полное отражение света. Линзы. Построение изображений в линзе. Формула тонкой линзы. Увеличение линзы. Дисперсия света. Интерференция света. Применение интерференции света. Дифракция света. Границы применимости геометрической оптики. Дифракционная решетка. Поперечность световых волн. Поляризация света.

Элементы теории относительности (3 часа)

Глава 8. Элементы теории относительности

Законы электродинамики и принцип относительности. Постулаты теории относительности. Основные следствия из постулатов теории относительности. Элементы релятивистской динамики.

Квантовая физика (14 часов)

Глава 9. Излучение и спектры

Виды излучений. Источники света. Спектры и спектральный анализ. Шкала электромагнитных излучений.

Глава 10. Квантовая физика. Световые кванты

Фотоэффект. Применение фотоэффекта. Фотоны. Корпускулярно-волновой дуализм. Давление света. Химическое действие света.

Глава 11. Атомная физика

Строение атома. Опыт Резерфорда. Квантовые постулаты Бора. Модель атома водорода по Бору. Лазеры.

Глава 12. Физика атомного ядра.

Строение атомного ядра. Ядерные силы. Обменная модель ядерного взаимодействия. Энергия связи атомных ядер. Радиоактивность. Виды радиоактивного излучения. Закон

радиоактивного распада. Период полураспада. Методы наблюдения и регистрации элементарных частиц. Искусственная радиоактивность. Ядерные реакции. Деление ядер урана. Цепная реакция деления. Ядерный реактор. Термоядерные реакции. Применение ядерной энергии. Изотопы. Получение и применение радиоактивных изотопов. Биологическое действие радиоактивных излучений.

Глава 13. Элементарные частицы.

Три этапа в развитии физики элементарных частиц. Открытие позитрона. Античастицы. Лептоны. Адроны. Кварки.

Астрономия (9 часов)

Глава 14. Солнечная система.

Видимые движения небесных тел. Законы Кеплера. Система Земля-Луна. Физическая природа планет и малых тел Солнечной системы.

Глава 15. Солнце и звезды.

Солнце. Основные характеристики звезд. Внутреннее строение Солнца и звезд. Эволюция звезд: рождение, жизнь и смерть звезд.

Глава 16. Строение Вселенной.

Млечный Путь — наша Галактика. Галактики. Строение и эволюция Вселенной. Единая физическая картина мира.

Повторение (2 часа)

Повторение основных разделов, изученных в курсе физики 11 класса. Написание тестовой итоговой работы за курс физики (включая раздел «Астрономия»).

Тематическое планирование 11 класс

Nº	Разделы курса физики	Всего часов
1	Основы электродинамики	16
2	Колебания и волны	14
3	Оптика	10
4	Элементы теории относительности	3
5	Квантовая физика	14
6	Астрономия	9
7	Повторение	2